Projective Geometric Algebra:
A Swiss army knife for doing
Cayley-Klein geometry

Charles Gunn
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Full-featured slides available at: https://slides.com/skydog23/icerm2019.
Check for updates incorporating new ideas inspired by giving the talk.

This first slide will indicate whether update has occurred.




What is Cayley-Klein
geometry?

Example: Given a conic section Q in RP2.

For two points z and y "inside" Q, define
d(a’7 b) — log(CR(f—H f—; L, y))
where f_, f_ are the intersections of the line

zy With Q and CR is the cross ratio.

CRis invariant under projectivities

= d is a distance function and the white
region is a model for hyperbolic plane H?.
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https://slides.com/secure/decks/1590919/print?margin=0.1&pdfSeparateFragments=true&print-pdf=true&slideNumber=true

What is Cayley-Klein
geometry?

SIGNATURE of Quadratic Form
Example: (+ + —-0) = (2,1,1)

60'60:€1°€1:—|-1, 62'62:—1, 63'63:0, ez--ej:Oforz'#j
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What is Cayley-Klein

geometry?
Signatureof Q | ~ Space Symbol
(n+1,0,0) +1 elliptic Ell", S™
(n,1,0) -1 hyperbolic H"
”(n,0,1)” 0 euclidean E"
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3D Examples

The Sudanese Moebius band in S° discovered by Sue Goodman and Dan
Asimov, visualized in UNC-CH Graphics Lab, 1979.

1.



Tessellation of H® with regular right-angled dodecahedra
(from "Not Knot", Geometry Center, 1993).
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3D Examples

The 120-cell, a tessellation of the 3-sphere S3
(PORTAL VR, TU-Berlin, 18.09.09)



Cayley-Klein geometries for n= 2

Name elliptic euclidean hyperbolic
signature (3,0,0) "(2,0,1)" (2,1,0)
null points | % + y* + 22=0 z? + y* — 22=0
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Cayley-Klein geometries for n= 2

Name elliptic euclidean hyperbolic
signature (3,0,0) "(2,0,1)" (2,1,0)
null points | z2 + y2 + 22=0 22=0 z? + % — 22=0

1.



Example Cayley-Klein geometries for n= 2

Name elliptic euclidean hyperbolic
signature (3,0,0) "(2,0,1)" (2,1,0)
Al c iRt @2 !‘2 L2220 20 02t -y—z—g—2 2_
null lines* | a? + b* + ¢*=0 a® + =0 a’ + b — =0

*The line axz + by + cz = 0 has line coordinates (a, b, ¢).
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Question

What is the best way
to do Cayley-Klein geometry
on the computer?
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Question

What is the best way
to do Cayley-Klein geometry
onh the computer?
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Vector + linear algebra




Vector + linear algebra

" W Projective
d points

Projective £
matrices




Vector + linear algebra

' Enumerate Group

Projective
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' Enumerate Group
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But it's 2019 now. Can we do better?




Cayley-Klein programmer's wish list
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Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes
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Parallel-safe meet and join operators | T\




Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes
Parallel-safe meet and join operators | 't\

Single, uniform rep'n for isometries



Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes
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Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes
Parallel-safe meet and join operators T,\

I a
)
-

Single, uniform rep'n for isometries

Compact expressions for
classical geometric results

*" Physics-ready

Coordinate-free




Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

Compact expressions for
classical geometric results




Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

Compact expressions for |
classical geometric results e\ '\

i

r,;’,-r )
g Physics-ready




Partial solutions: Quaternions (1843)

‘Eire

William Rowan Hamilton

1805-1865
48

A 4D algebra generated by units {1, 1, j, k} satisfying:

12=1, i?=j=k*= -1
ij = —ji, ...

1



Quaternions

Quaternions H

s+ xi+yj+ zk

Im. quaternions IH

vi=zi+yj+zk & (z,y,2) € R’

Unit quaternions U

{gcH|gg=1}
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Quaternions

Quaternions H

s+xi+yj+ zk

Im. quaternionsIH | v :=zi+yj + 2k < (z,y,2) € R®

Unit quaternionsU| {gecH |gg=1}

|. Geometric product:

ViVyg = —Vi1 Vo 4+ V] X V9

3.
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Quaternions

Quaternions H

s+xi+yj+ zk

Im. quaternions IH

vi=zit+yj+zk < (z,y,2) € R’

Unit quaternions U

{gcH|gg =1}

|. Geometric product:

ViVyg = —Vi1 Vo 4+ V] X V9

cross product

inner product

3.

3



Quaternions

Quaternions H s+xi+ yj+ zk

Im. quaternionsIH | v :=zi+yj + 2k < (z,y,2) € R®

Unit quaternionsU| {gecH |gg=1}

Il. Rotations via sandwiches:
1. For g € U, there exists x € IH so that
g = cos(t) + sin(t)x = e*
2.Forany v € IH (= R?), the "sandwich"
gveg
rotates v around the axis x by an angle 2t.

3. Comparison to matrices.




Quaternions

Quaternions H

s+ xi+yj+ zk

Im. quaternions IH

vi=zit+yj+zk < (z,y,2) € R’

Unit quaternions U

{gcH|gg=1}

Advantages

|. Geometric product
Il. Rotations as sandwiches

Disadvantages

l. Only applies to points/vectors
Il. Special case R?

.5



Partial solutions: Grassmann algebra

Hermann Grassmann (1809-1877)
Ausdehnungslehre (1844)

1



Grassmann algebra
The wedge (A) product in RP? and RP?*




Grassmann algebra

4.



Grassmann algebra

Standard projective

x Ay is join
yields \ RP?
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Grassmann algebra

Standard projective
x Ay is join
yields A\ RP?

Dual projective
x Ay iS meet
yields \ RP%*

4.



Grassmann algebra

The dual projective

Grassmann algebra A RP**

Grade |Sym Generators Dim. Type
0o | A 1 1 Scalar
1 /\1 {e07e1792} 3 Line
2 /\2 {E; =e; \Ney} 3 Point
3 A’ I=eyNeNey 1 | Pseudoscalar




Grassmann algebra

The dual projective
Grassmann algebra A RP**

Grade |Sym Generators Dim. Type
0 | A 1 1 Scalar
1 /\1 {eo, e, ez} 3 Line
2 /\2 {E; =e; \Ney} 3 Point
3 A’ I=eyNeNey 1 | Pseudoscalar

We will be using A RP™* for the rest of the talk.




Grassmann algebra

The wedge (A) product in RP?2

Properties of A
1. Antisymmetric: For 1-vectors x, y:
XAy =-YyYAX
xAx=0
2. Subspace lattice: For linearly independent subspaces x €
Ay e N, x Ay € N"T™ is the subspace spanned by x and y
otherwise it's zero.

Note: The regressive (join) product V is also available.

(Then it's called a Grassmann-Cayley algebra.)




Grassmann algebra

Note: spanning subspace means different things in
standard and dual setting. In 3D:

Standard: a line is the Dual: a line is the
subspace spanned by subspace spanned by
two points. two planes.

e P
: (a(\% Ianepe

4.6



Grassmann algebra

Advantages

1. Points, lines, and planes are equal citizens.
2. "Parallel-safe" meet and join operators since projective.

Disadvantages

1. Only incidence (projective), no metric.



Clifford's geometric algebra

William Kingdon Clifford (1845-1879)
"Applications of Grassmann's extensive algebra" (1878):

His stated aim: to combine quaternions with Grassmann
algebra.

1



Clifford's geometric algebra

Geometric product extends the wedge product and is defined
for two 1-vectors as:

Xy =XV +xA
y /y \y

0-vector 2-vector
where - is the inner product induced by Q.

Since the two terms measure different aspects,
the sum is (usually) non-zero.

This product can be extended to the whole Grassmann algebra
to produce the geometric algebra P(R* ).

p’n’z



Clifford's geometric algebra

Geometric product extends the wedge product and is defined
for two 1-vectors as:

Xy =Xy + XAy measures
MEASUTES SAMENESS — g_yector 2-vector — | difference

where - is the inner product induced by Q.

Since the two terms measure different aspects,
the sum is (usually) non-zero.

This product can be extended to the whole Grassmann algebra
to produce the geometric algebra P(R* ).

p’n’z



Projective geometric algebra

We call an algebra constructed in this way a projective
geometric algebra (PGA).

We are interested in P(R3,,), P(R5;,), P(R5,,).
We sometimes write P(R?) and leave the metric open.

We can choose a fundamental

3 E

triangle so that: \ 2 o 1/
(k € {—1,0,1}) 7

Ek = eiej — €; /\ ej S —ejez. )

I.= €pe1€2 /E\

5.



2D PGA

Example: Two lines, let 2 = &
a = apey + aje; + ases
b = byey + bie; + baesy
ab = (agbye; + aibie] + asbres)
+(agby — aibg)eger + (a1by — asby)eres + (agby — asby)epes
= (agbok + a1b; + asbs)
+(a1by — agby)Ey + (asby — agbs) By + (agby — a1by)Es
—a-b+aAb



2D PGA

: 2 _ .
Example: Two Ilnez,lzezjgo e
b = byey + bie; + boesy :
ab = (agboeg + arbref + a2b2€2)b o)
— aibg)eper + (a1by — asby)eies + (agbs
+(agby — a1bg i T ] _
by — ashy)Ey + (asby — agbs) By + (agby — aq1by) B
e 2 —a-b+aAb

Looks like cro

>S product byt js
the point incid

ent to both lines,




2D PGA

Example: x = 1and ¢ = - and

a:eo, b:C€0+C€1
Then a? = b? = 1.
a is the equator great circle z = 0 and b is tilted up from it an

angle of 45°,
ab =c+ E2

Check: cos™!(c) = 45° and E, is the common point.



2D Euclidean PGA

We can now explain why P(R3,,) is the right choice for the euclidean
plane.

The inner product of two lines is
a-b = (agbok + aib; + asbs)

For a euclidean line changing ay or by doesn't change the direction of
the line. It just moves it parallel to itself. This means e = 0.

5.



Clifford's geometric algebra

1 eo eq es Ey |E1 |Eo |I
1 1 e |er |ea |Eo |[E1 |Eo |I
€0 €0 Y EQ —E1 || —REeo2Rke1 Iﬁ:Eo
e eq —E-> (1 Eo |eo | —eo (Eq
es es E, |—Ey|1 —e1 |eg | E-
Eq Eo |I —es |eq -1 |[—Es|E{ |—eg
E. E: |rkey (I —eg |Eo |—k |—kKE{j—ke;
E- Es |[—reqleg |1 —Eq |[kEg |-k |—Kkes
I I kKEg |E1 [Eo |—eg |—Kkei|l—keo|—K

Multiplication table for 2D PGA. k € {-1,0,1}




2D PGA Preliminaries

1. We can normalize a proper line m or point P so that:
m?=1 P?=—x

1a. Elements such that x? = 0 are called ideal.

1b. Formulas given below often assume normalized arguments.

1



PGA: 2-way products
2. Multiplication with I: For any k-vector x, x* := xI is the orthogonal
complement of x.
Example: eI = keje;. The only thing leftin I is what isn't in X.

2a. In the euclidean case, I? = 0.

.2



PGA: 2-way products
2. Multiplication with I: For any k-vector x, x* := xI is the orthogonal
complement of x.
Example: eI = kejes. The only thing leftin I is what isn't in X.

2a. In the euclidean case, I? = 0.

COS/’—ltb-C)
bAcC C

cl

.2



PGA: 2-way products

3. Product of two proper lines a,b that meet at a proper point P:
ab = cos(t) + sin (¢)P

where t is the angle between the lines (arbitrary k).

cosh—tb-c)

bAac C

cl

6.
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PGA: 2-way products

3a. Product of two proper lines a,b x = —1, P is hyper-ideal point. Then
ab = cosh(d) + sinh(d)P

where d is the hyperbolic distance between the lines.

cosh'l(b-c)

bAc C

cl

.4



PGA: 2-way products
4. Product of proper line c and proper point Q:
cQ =c-Q+ (coshd)I (= (cQ)1 + (cQ)3)

The first term is the line through Q perpendicular to ¢, sometimes written
ag. d is the distance from point to line.

scl
f




PGA: 2-way products

5. Product of two proper points P, Q. Then

PQ = cosh(d) + sinh(d)R
d is the distance between the two points and R is the normalized form of
(PQ),, which is the common orthogonal (P v Q)= .

scl
f

6.
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Isometries via 3-way products

Reflections

Consider the 3-way product X' = aXa, where a is a proper line and X is
anything.
Then X' is the reflection of X in the line a.

aXa

A x

1



Isometries via 3-way products

Rotations

A reflection in a second proper line b gives X’ = b(aXa)b = (ba)X(ab), by
associativity. r := bais called a rotor and X’ = RXR where R is reversal
operator.




Isometries via 3-way products

Euclidean translations

If Kk = 0and P is ideal, X’ is a translation of distance 2d, where d is the
distance betwen a and b. Similar results for kK = —1.

baXab

aXa P-

d(a,b) a
2d

X




Quaternions in 2D elliptic PGA

eo eq e Eo |[Ei |Ey |

Fo; k = 1, the even sub-algebra (shown in red) is

isomorphic to H under the map !
{1,E0,E1,E2} ~ {17k7j7i} k




Exponentiating bivectors

Every rotor can be produced directly by exponentation of a bivector. When
P? = —1 then
r := exp(tP) = cos(t) + sin(¢)P
rXr produces a rotation through angle 2t around P.
Analogous results hold for P? = 0 or 1 yielding parabolic or hyperbolic
isometries.
The ideal norm

P2 = 0: how to normalize P so % is a translation of 2d? Time permitting ...



Lie algebra and Lie group

The bivectors A” form the Lie algebra.

Define G to be the elements of the even sub-algebra of norm 1. Then G is
the Lie group.

And exp : A — G is a 1:1 map up to multiples of 2x (for n = 3).

Y (brvectors) /

7.



Formula factories via 3-way products

3-way products with a repeated factor of the form YXX can be used as
formula factories.

Example: m = m(nn) = (mn)n since for a proper line n? = 1 and
associativity. This leads to a decomposition of m with respect to n:

(mn)n = (cos(a) + sin(a)P)n
= cos(a)n + sin(a)Pn
= cos(a)n + sin(a)P - n

= cos(a)n — sin(a)n - P

The arrows show the orientation of
the lines.




Formula factories via 3-way products

Examples: Anything can be orthogonally decomposed with respect
to anything else! ~ For example ...

Decompose point WRT line. Decompose line WRT point.

The pieces of the decomposition are often interesting in their own
right. For example, (P - m)m is closest point to P on m.

7.8



Formula factories via 3-way products

General 3-way products abc of 1-vectors provide a useful
framework for a general theory of triangles. Lots left to do!

cab+cba (= abc+bac)

7.9



2D PGA in the browser

A euclidean demo from Steven De Keninck, using his ganja.js Javascript
implementation, showing several of the features discussed above.

¢ = line (vector)

P = point (bivector)

(P = line through P, L to /

¢PY = reflection of Pin ¥/

P(P =reflectionof £in P

(¢ - P){ = projection of P on ¢/

These slides are available at https://slides.com/skydog23/icerm2019/live

.10


https://github.com/enkimute/ganja.js/wiki
https://enkimute.github.io/ganja.js/examples/coffeeshop.html#iAdRREx-M&fullscreen

Glimpse at 3D

Bivectors!

Julius Pluecker



Julius Pluecker

Glimpse at 3D

Bivectors!



Glimpse at 3D

\

I'IP/\I'I

.2



Kinematics and Mechanics

A velocity state is V e A” (in this case a point)
A momentum state is M ¢ /\”_2 (in this case a line)

A rigid body is a collection of Newtonian mass points.

Calculate inertia tensor A for the body, a quadratic form
determined by the mass distribution.
M = AV

ODE's for free top:
PGA equations for the free top in P(R}):
g = %V
M = 5 (VM —MV)

where g € G, and M and Vare in the body frame.

A



2D Kinematics and Mechanics

Advantages of PGA:

1. Euclidean case: No splitting into linear and angular parts. A linear
velocity is a velocity carried by an ideal point (euclidean). An angular
momentum (or force couple) is one carried by the ideal line.

2. Similar results hold in 3D.
3. The equations are numerically optimal compared to matrix methods.

Normalizing g keeps it on the solution space.



2D Kinematics and Mechanics

9.


https://player.vimeo.com/video/358743032?api=1

3D Kinematics and Mechanics

o .
Angular Momentum CAng_ular Velocity

—

Polhoccjff’
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3D

Poinsot
motion (?)

;'i'liﬂﬂtﬁ

Ltk
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Cayley-Klein programmer's wish list

,}

10.
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Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

10.
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Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

Metric-neutral

10.
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Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes
Parallel-safe meet and join operators T,\

I a
)
-

Single, uniform rep'n for isometries

Compact expressions for
classical geometric results

Metric-neutral

10.
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Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes
Parallel-safe meet and join operators T,\

I a
)
-

Single, uniform rep'n for isometries

Compact expressions for
classical geometric results

*" Physics-ready

Metric-neutral
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Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

Compact expressions for
classical geometric results

Backwards compatible J Physics-ready

Metric-neutral

10.
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Cayley-Klein programmer's wish list

Uniform rep'n for points, lines, and planes

Compact expressions for |
classical geometric results e\ '\

i

r,?, . \
Backwards compatible | £ Physics-ready

Metric-neutral Coordinate-free

10.
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Conclusions

Dual PGA fulfills the "programmers wish list" from the beginning.

It completes Clifford's project (cut short by his death) of combining
Grassmann algebra with all biquaternions, not just the elliptic ones.
There's a lot left to explore, both in non-euclidean and euclidean, 2D
and 3D.

Team members sought to create browser-based metric-neutral PGA
scene graph with physics engine.

Ask me about ideal norms and dual euclidean space.

dual euclidean

hyperbolic ¢~ elliptic

DUALIZE

euclidean

10.2



Resources

Javascript implementation
Steven De Keninck
ganja.js

10.
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https://github.com/enkimute/ganja.js/wiki

{2D PROJECTIVE GEOMETRIC ALGEBRA }

2D PGA CHEAT SHEET SIGGRAPH 2019 COURSE NOTES

Basis & Metric: Points, Lines: Rotors & Translators:
R; 0.1 Euclidean point at () Tex + yen + ez Rotator a around point Py eiPr =cos g +sin§Pp
\Uy
§Poc — d
VECTOR BIVECTOR | I=PSS Direction (ideal point) (-, y) resn + yeor Translator d orthogonal to P eiPe =14 4P,
1l | e | e | e |eon | exn | €| € Line witheq. ax + by + ¢ =0 £=ae; + bes + cep Motor between lines £1,£; &4
+1 (W | a1 g Incidence: Logarithm of motor m (;;):
LINE: £ POINT : P B T
Join points Py, P> in line £ £=P VP, ompose & APPly:
Multiplication Table: Compose motors m; and m. mom
Meet lines £, 2 in point P Pt Aty P : ? 2
m
1 €y €] ez €01 | €20 | €12 | epi2 Project, Reject: Normalize motor m m = W
2 : m
ep €p1 | -€20 €012
e, | -eq 1 ez | < |enz| e | exn Line orthogonal to line £, through point P L P=¢xP Square root of motor m vm = (1+m)
€2 | €0 | €12 | 1 |emz2| € I L | eol Project point P on line £ (€. p) Reflect element X in line £ £X¢
€o1 €0 | €012 ~€20
e ep12 | -€g eg) Project line £ on point P - PP kTransform X with motor m mXm
€12 | €02 | “€2 € €2 | €p | 1 | -€0 . . . N
P e | ©o1 ey Direction orthogonal to line £ =l MORE
Norms and numerical values:
Operators: Areas:
= o e — - 2 2 N N N
. Euc. norm of £ = ceq + ae; + bey: €] := VE (= vaZ + b7) Area of AP, PP, LB, VP,V Py
ab Geometric Product /P :
- - — — /22 nel L L
a* Dual Euc. norm of P = wey + yeo) + zeps: [P := VPP (= V2?) Length of closed loop P, P,..P,, 11 > P VPl
at al Polar . . !
Ideal norm of ideal P = « : Pl = /x? + y? n=l -
a Reverse ! Fe0 + oy P =ity Area of closed loop P P5...P, H(E PivPi) e
— i=1
(a)n Select grade n Norm of motor m [mll = vmm Rigid Body Mechanics: (Valid in euclidean, elliptic & hyperbolic planes)
anb {ab)gye Outer Product meet . .
avb | (a*Ab*)* | Regressive Product join Numerical value of ideal £ = cey: [l := ¢ Kinematics-points, dynamics-lines linear+angular unified
a-b (ab) sy Inner Product Numerical value of pseudoscalar al [lal]|c = a Element in the body/space frame Xp/ X
axb | L{ab—ba) | Commutator Product Metri
etric: . - ~
aba Sandwich Product Path of x under the motion g Xo = BX0B, Xp = BX.8
Distance between points P, P Hf’. v f’gH, 1By x P2]loo ) . . )
oL Velocity V,, in the body Vi, = g (a bivector)
B ine li oy cos= V(B - o). sin= (117, A P i
: Angle of intersecting lines £,, €5 cos™ ' (€, - £), sin™ " ([|€) A £3]]) Inertia tensor A : /\z o /\1 maps vel. ¢ mom. in body
Multivector | a + beg + cey + deg + eeqy + feag + gey2 + hepia L
Dual h+ ge® + fe! + ee? + de® + ce?® + bel? + ae?'? Distance parallel lines £,, £; €1 A 2o Momentum line my, in the body my, = A(V,)
Reverse o+ beg + cey + deg — eeqy — fezp — gerz — hegrz Oriented dist. eucl. P to line £ PVE|PAE Kinetic energy £ E=myVvV,
Sub-algebras: Angle betw. ideal P and line £ sin”! [P A B Euler Eq. of Motion 1: g=gV,
{1} R Real {l.e;a} © Complex ) Angle bisector of £; and £, (& +Es)or 8y — 2 Euler EoM 2: (f, = ext. forces) Vi = 2A7 (f, + (my, x V)
{l.eo} D Dual {l.ex} D Hyperbolic
{l,e12} rotors {l,ep1.€20} translators Perp. bisector of Py and Py (P 4+ Py)(P, v Py) Time derivative of energy £ E=—2f,vV,
{1.€01,€20.€12} motors y .
9 kAltitudes of AP P,P; (P v P3) - Py, etc. kWork w(t) = E(t) — E(0) = [y Eds = =2 [ f, v Vyds




Resources

Metric-neutral resources

My Ph. D. thesis
ganja.js

Euclidean resources

bivector.net/doc SIGGRAPH 2019 course notes & cheat sheets &

course videos + more.

Live 2D and 3D PGA demos in JavaScript
My ResearchGate PGA project

Questions and comments: projgeom at gmail.com

Thanks for your attention!

10.
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https://www.researchgate.net/publication/265672134_Geometry_Kinematics_and_Rigid_Body_Mechanics_in_Cayley-Klein_Geometries
https://github.com/enkimute/ganja.js/wiki
http://bivector.net/doc
https://enkimute.github.io/ganja.js/examples/coffeeshop.html#pga3d_differentiation
https://www.researchgate.net/project/Projective-geometric-algebra

10.
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Partial solutions: Quaternions

Quaternions H s+xi+yj+ zk

Im. quaternionsIH | v :=zi+yj+ 2k < (z,y,2) € R

Unit quaternionsU | {gecH | gg=1}

l1l. ODE's for Euler top:
Quaternion equations for the Euler top in R3:
1@ =gV
M = 5(VM —MYV)
where g € Uand M,V € IH are the momentum, resp.,
velocity vectors in the body frame.

(M = AV for inertia tensor A).




Dual projective Grassmann algebra

1 e |e1 |es |Ep |E1 |Es
1 1 ey e es Ey |[E1 |Es
ep ep E, [—E;|I
e e —E- Eg I
es e- Ei [—Ej I
E, [|[Eg |I
E, [|E; I
E;, [|Es 1
| I

Multiplication table for A RP**
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Geometric algebra notation

General multivector is sum of k-vectors: a = Xy (a)y

Points are large letters (P) and lines are small (m).

The unit pseudoscalar is written 1.

The product of a k-vector and an m-vector is a sum
KM = ijl",’f_m|<KM>i

where i increases by steps of 2.

K AM = (KM

K- -M:=(KM);

K xM:=KM - MK

K Vv M is the join.




The euclidean algebra P(R3 ;)

Question: Why is the signature (2,0, 1) using the dual
construction the proper model for the euclidean plane?

Answer: Given two lines m; = c;ey + a;e; + b;e, (With
equations a;xz + b;y + ¢; = 0). Then

mi; -ms, — cocle% + ajaqe? + by byes
Since the cosine of the angle between the lines is ajas +
biby, €3 =0 while e? = e3 = 1.

11.



The euclidean algebra P(R3 ;)

Question: Why is the signature (2,0, 1) using the dual
construction the proper model for the euclidean plane?

Answer: Given two lines m; = c;ey + a;e; + b;e, (With
equations a;xz + b;y + ¢; = 0). Then

mi; -ms, — cocle% + ajaqe? + by byes
Since the cosine of the angle between the lines is ajas +
biby, €3 =0 while e? = e3 = 1.

History: That P(R3 ;) models euclidean geometry was
first published by Jon Selig in 2000.
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Question

What is the best way
to do Cayley-Klein geometry
on the computer?



