
Projective Geometric Algebra:
A Swiss army knife for doing

Cayley-Klein geometry
Charles Gunn

Sept. 18, 2019 at ICERM, Providence

Full-featured slides available at: https://slides.com/skydog23/icerm2019.

Check for updates incorporating new ideas inspired by giving the talk.

This first slide will indicate whether update has occurred.
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What is Cayley-KleinWhat is Cayley-Klein
geometry?geometry?

Example: Given a conic section  in .

For two points  and  "inside" , define

where  are the intersections of the line
 with  and CR is the cross ratio.

CR is invariant under projectivities

 d is a distance function and the white
region is a model for hyperbolic plane .

Q RP 2

x y Q
d(a, b) = log(CR(f  , f  ;x, y))+ −

f  , f  + −

xy Q

⇒

H2
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What is Cayley-KleinWhat is Cayley-Klein
geometry?geometry?

SIGNATURE of Quadratic Form
Example: 
  

(+ + −0) = (2, 1, 1)

 e  ⋅0 e  =0 e  ⋅1 e  =1 +1,  e  ⋅2 e  =2 −1,  e  ⋅3 e  =3 0,  e  ⋅i e  =j 0 for i  = j
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Signature of Q Space Symbol
+1 elliptic

-1 hyperbolic

0 euclidean

What is Cayley-KleinWhat is Cayley-Klein
geometry?geometry?

(n + 1, 0, 0)

En
Hn
Ell ,Sn n

(n, 1, 0)

"(n, 0, 1)"

κ
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The Sudanese Moebius band in  discovered by Sue Goodman and Dan
Asimov, visualized in UNC-CH Graphics Lab, 1979.

S3

3D Examples3D Examples

1 . 5



Tessellation of  with regular right-angled dodecahedra
(from "Not Knot", Geometry Center, 1993).

H3

3D Examples3D Examples
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The 120-cell, a tessellation of the 3-sphere 
(PORTAL VR, TU-Berlin, 18.09.09)

S3

3D Examples3D Examples
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Name elliptic euclidean hyperbolic
signature (3,0,0) "(2,0,1)" (2,1,0)

null points =0x +2 y +2 z2 =0x +2 y −2 z2

  Cayley-Klein geometries for Cayley-Klein geometries for nn = 2 = 2
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Name elliptic euclidean hyperbolic
signature (3,0,0) "(2,0,1)" (2,1,0)

null points

null lines*

=0x +2 y +2 z2 =0z2 =0x +2 y −2 z2

=0a +2 b +2 c2 =0a +2 b −2 c2=0a +2 b2

*The line  has line coordinates .ax + by + cz = 0 (a, b, c)

 Example  Example Cayley-Klein geometries for Cayley-Klein geometries for nn = 2 = 2
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QuestionQuestion
What is the best wayWhat is the best way

to do Cayley-Klein geometryto do Cayley-Klein geometry

on the computer?on the computer?
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QuestionQuestion
What is the best wayWhat is the best way

to do Cayley-Klein geometryto do Cayley-Klein geometry

on the computer?on the computer?

1993 2019
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Vector + linear algebraVector + linear algebra
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Projective
points

Projective
matrices

Vector + linear algebraVector + linear algebra
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Projective
points

Projective
matrices

Vector + linear algebraVector + linear algebra
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Projective
points

Projective
matrices

Vector + linear algebraVector + linear algebra

But it's 2019 now. Can we do better?
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Cayley-Klein programmer's wish listCayley-Klein programmer's wish list
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Coordinate-free
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Cayley-Klein programmer's wish listCayley-Klein programmer's wish list
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Parallel-safe meet and join operators

Compact expressions for
classical geometric results
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Partial solutions: Quaternions (1843)Partial solutions: Quaternions (1843)

A 4D algebra generated by units  satisfying:{1, i, j,k}

1 =2 1,   i =2 j =2 k =2 −1
ij = −ji, ...

3 . 1



QuaternionsQuaternions

Quaternions H
Im. quaternions IH
Unit quaternions U

s + xi+ yj+ zk

 v := xi+ yj+ zk  ⇔ (x, y, z) ∈ R3

{g ∈ H ∣ g  =g 1}
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Quaternions H
Im. quaternions IH
Unit quaternions U

s + xi+ yj+ zk

 v := xi+ yj+ zk  ⇔ (x, y, z) ∈ R3

{g ∈ H ∣ g  =g 1}

I. Geometric product:
v  v  =1 2 −v  ⋅1 v  +2 v  ×1 v  2

QuaternionsQuaternions
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Quaternions H
Im. quaternions IH
Unit quaternions U

s + xi+ yj+ zk

 v := xi+ yj+ zk  ⇔ (x, y, z) ∈ R3

{g ∈ H ∣ g  =g 1}

I. Geometric product:
v  v  =1 2 −v  ⋅1 v  +2 v  ×1 v  2

inner productcross product

QuaternionsQuaternions
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Quaternions H
Im. quaternions IH
Unit quaternions U

s + xi+ yj+ zk

 v := xi+ yj+ zk  ⇔ (x, y, z) ∈ R3

{g ∈ H ∣ g  =g 1}

II. Rotations via sandwiches:
1. For , there exists  so that

2. For any , the "sandwich"  

 rotates  around the axis  by an angle .

3. Comparison to matrices.

g ∈ U x ∈ IH
g = cos(t) + sin(t)x = etx

v ∈ IH  (≅ R )3

gv  g
v x 2t

QuaternionsQuaternions
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Quaternions H
Im. quaternions IH
Unit quaternions U

s + xi+ yj+ zk

 v := xi+ yj+ zk  ⇔ (x, y, z) ∈ R3

{g ∈ H ∣ g  =g 1}

AdvantagesAdvantages
I. Geometric product
II. Rotations as sandwiches

DisadvantagesDisadvantages
I. Only applies to points/vectors
II. Special case R3

QuaternionsQuaternions
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Partial solutions: Grassmann algebraPartial solutions: Grassmann algebra

Hermann Grassmann (1809-1877)
 Ausdehnungslehre (1844)
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Grassmann algebraGrassmann algebra
The wedge ( ) product in  and ∧ RP 2 RP 2∗
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Grassmann algebraGrassmann algebra
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Standard projective
 is join

yields 
x ∧ y

RP⋀ 2

Grassmann algebraGrassmann algebra
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Standard projective
 is join

yields 
x ∧ y

RP⋀ 2

Dual projective
 is meet

yields 
x ∧ y

RP⋀ 2∗

Grassmann algebraGrassmann algebra
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Grade Sym Generators Dim. Type
0 1 1 Scalar

1 3 Line

2 3 Point

3 1 Pseudoscalar⋀3

⋀2

⋀1
⋀0

{e  , e  , e  }0 1 2

{E  =i e  ∧j e  }k

I = e  ∧0 e  ∧1 e  2

The dual projective
Grassmann algebra RP⋀ 2∗

Grassmann algebraGrassmann algebra
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Grade Sym Generators Dim. Type
0 1 1 Scalar

1 3 Line

2 3 Point

3 1 Pseudoscalar⋀3

⋀2

⋀1
⋀0

{e  , e  , e  }0 1 2

{E  =i e  ∧j e  }k

I = e  ∧0 e  ∧1 e  2

We will be using  for the rest of the talk.RP⋀ n∗

The dual projective
Grassmann algebra RP⋀ 2∗

Grassmann algebraGrassmann algebra
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Properties of 
1. Antisymmetric: For 1-vectors :

2. Subspace lattice: For linearly independent subspaces  
,  is the subspace spanned by  and 

otherwise it's zero.

∧

x,y
x ∧ y = −y ∧ x
x ∧ x = 0

x ∈
,y ∈⋀k ⋀m x ∧ y ∈ ⋀k+m x y

Note: The regressive (join) product  is also available.

(Then it's called a Grassmann-Cayley algebra.)

∨

The wedge ( ) product in ∧ RP 2

Grassmann algebraGrassmann algebra
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Note: spanning subspace means different things in
standard and dual setting. In 3D:

Standard: a line is the
subspace spanned by

two points.

Dual: a line is the
subspace spanned by

two planes.

Point range

Spear

Plane pencil

Axis

Grassmann algebraGrassmann algebra
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AdvantagesAdvantages
1. Points, lines, and planes are equal citizens.
2. "Parallel-safe" meet and join operators since projective.

DisadvantagesDisadvantages
1. Only incidence (projective), no metric.

Grassmann algebraGrassmann algebra
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Clifford's geometric algebraClifford's geometric algebra

William Kingdon Clifford (1845-1879)
 "Applications of Grassmann's extensive algebra" (1878):

His stated aim: to combine quaternions with Grassmann
algebra.
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Geometric product extends the wedge product and is defined
for two 1-vectors as:

 
where  is the inner product induced by .

xy := x⋅y + x ∧ y

⋅ Q

Clifford's geometric algebraClifford's geometric algebra

0-vector 2-vector

This product can be extended to the whole Grassmann algebra
to produce the geometric algebra .P(R  )p,n,z

∗

Since the two terms measure different aspects,
the sum is (usually) non-zero.
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Geometric product extends the wedge product and is defined
for two 1-vectors as:

 
where  is the inner product induced by .

xy := x⋅y + x ∧ y

⋅ Q

Clifford's geometric algebraClifford's geometric algebra

0-vector 2-vector

This product can be extended to the whole Grassmann algebra
to produce the geometric algebra .P(R  )p,n,z

∗

measures sameness
measures
difference

Since the two terms measure different aspects,
the sum is (usually) non-zero.
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Projective geometric algebraProjective geometric algebra

We can choose a fundamental
triangle so that:
e  =0

2 κ, e  =1
2 e  =2

2 1
(κ ∈ {−1, 0, 1})

E  :k = e  e  =i j e  ∧i e  =j −e  e  j i

I := e  e  e  0 1 2

We call an algebra constructed in this way a projective
geometric algebra (PGA).
We are interested in   , , .

We sometimes write  and leave the metric open.

P(R  )3,0,0
∗ P(R  )2,1,0

∗ P(R  )2,0,1
∗

P(R  )κ
∗
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2D PGA2D PGA

Example: Two lines, let  e  =0
2 κ

a = a  e  +0 0 a  e  +1 1 a  e  2 2

b = b  e  +0 0 b  e  +1 1 b  e  2 2

ab = (a  b  e  +0 0 0
2 a  b  e  +1 1 1

2 a  b  e  )2 2 2
2

+(a  b  −0 1 a  b  )e  e  +1 0 0 1 (a  b  −1 2 a  b  )e  e  +2 1 1 2 (a  b  −0 2 a  b  )e  e  2 0 0 2

= (a  b  κ +0 0 a b  +1 1 a  b  )2 2

+(a  b  −1 2 a  b  )E  +2 1 0 (a  b  −2 0 a  b  )E  +0 2 1 (a  b  −0 1 a  b  )E  1 0 2

= a ⋅ b+ a ∧ b
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2D PGA2D PGA

Example: Two lines, let  e  =0
2 κ

a = a  e  +0 0 a  e  +1 1 a  e  2 2

b = b  e  +0 0 b  e  +1 1 b  e  2 2

ab = (a  b  e  +0 0 0
2 a  b  e  +1 1 1

2 a  b  e  )2 2 2
2

+(a  b  −0 1 a  b  )e  e  +1 0 0 1 (a  b  −1 2 a  b  )e  e  +2 1 1 2 (a  b  −0 2 a  b  )e  e  2 0 0 2

= (a  b  κ +0 0 a b  +1 1 a  b  )2 2

+(a  b  −1 2 a  b  )E  +2 1 0 (a  b  −2 0 a  b  )E  +0 2 1 (a  b  −0 1 a  b  )E  1 0 2

= a ⋅ b+ a ∧ b

Looks like cross product but isthe point incident to both lines.
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2D PGA2D PGA

Example:  and   and

Then .

 is the equator great circle  and  is tilted up from it an
angle of .

Check:  and  is the common point.

κ = 1 c =  

 2
1

a = e  ,    b =0 ce  +0 ce  1

a =2 b =2 1

a z = 0 b

45∘

ab = c + E  2

cos (c) =−1 45∘ E  2
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2D Euclidean PGA2D Euclidean PGA
We can now explain why  is the right choice for the euclidean
plane.

The inner product of two lines is 

For a euclidean line changing  or  doesn't change the direction of
the line. It just moves it parallel to itself. This means .

P (R  )2,0,1
∗

a ⋅ b = (a  b  κ +0 0 a  b  +1 1 a  b  )2 2

a  0 b  0

e  =0
2 0
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Clifford's geometric algebraClifford's geometric algebra

0-vector 2-vector

Multiplication table for 2D PGA. κ ∈ {−1, 0, 1}
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2D PGA Preliminaries2D PGA Preliminaries

1. We can normalize a proper line  or point  so that:

1a. Elements such that  are called ideal.

1b. Formulas given below often assume normalized arguments.

m P
m =2 1,    P =2 −κ

x =2 0

6 . 1



PGA: 2-way productsPGA: 2-way products

2. Multiplication with : For any k-vector ,  is the orthogonal
complement of .

Example: .  The only thing left in  is what isn't in .

2a. In the euclidean case, .

I x x :⊥ = xI
x

e  I =0 κe  e  1 2 I X

I =2 0
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PGA: 2-way productsPGA: 2-way products

2. Multiplication with : For any k-vector ,  is the orthogonal
complement of .

Example: .  The only thing left in  is what isn't in .

2a. In the euclidean case, .

I x x :⊥ = xI
x

e  I =0 κe  e  1 2 I X

I =2 0

6 . 2



PGA: 2-way productsPGA: 2-way products

3. Product of two proper lines  that meet at a proper point :

where  is the angle between the lines (arbitrary ).

a, b P

ab = cos(t) + sin (t)P

t κ
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PGA: 2-way productsPGA: 2-way products
3a. Product of two proper lines   ,  is hyper-ideal point. Then

where  is the hyperbolic distance between the lines.

a, b κ = −1 P

ab = cosh(d) + sinh(d)P

d

6 . 4



PGA: 2-way productsPGA: 2-way products
4. Product of proper line  and proper point :

The first term is the line through  perpendicular to , sometimes written 
.  is the distance from point to line.

c Q

cQ = c ⋅Q+ (cosh d)I (= ⟨cQ⟩  +1 ⟨cQ⟩  )3

Q c
a  Q

⊥ d

6 . 5



PGA: 2-way productsPGA: 2-way products

5. Product of two proper points . Then

 is the distance between the two points and  is the normalized form of 
, which is the common orthogonal .

P,Q

PQ = cosh(d) + sinh(d)R

d R

⟨PQ⟩  2 (P ∨Q)⊥

6 . 6



Isometries via 3-way productsIsometries via 3-way products

Reflections

Consider the 3-way product , where  is a proper line and  is
anything.

Then  is the reflection of  in the line .

X =′ aXa a X

X′ X a

7 . 1



Rotations

A reflection in a second proper line  gives , by
associativity.  is called a rotor and  where  is reversal
operator.

b X =′ b(aXa)b = (ba)X(ab)

r := ba X =′ RXR R

Isometries via 3-way productsIsometries via 3-way products

7 . 2



Euclidean translations
If  and  is  ideal,  is a translation of distance 2d, where d is the
distance betwen a and b. Similar results for .

κ = 0 P X′

κ = −1

Isometries via 3-way productsIsometries via 3-way products
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Quaternions in 2D elliptic PGAQuaternions in 2D elliptic PGA

For , the even sub-algebra (shown in red) is
isomorphic to  under the map

κ = 1
H

{1,E  ,E  ,E  } ⇔0 1 2 {1,k, j, i}

7 . 4



Every rotor can be produced directly by exponentation of a bivector. When 
 then

 produces a rotation through angle  around .

Analogous results hold for  yielding parabolic or hyperbolic
isometries.

The ideal norm

: how to normalize  so  is a translation of 2d? Time permitting ... 
 

P =2 −1

r := exp(tP) = cos(t) + sin(t)P

rXr 2t P

P =2 0 or 1

P =2 0 P edP

Exponentiating bivectorsExponentiating bivectors
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The bivectors  form the Lie algebra.

Define  to be the elements of the even sub-algebra of norm 1. Then  is
the Lie group.

And  is a 1:1 map up to multiples of  (for ).

⋀2

G G

exp : →⋀2 G 2π n = 3

Lie algebra and Lie groupLie algebra and Lie group

7 . 6



Formula factories via 3-way productsFormula factories via 3-way products

3-way products with a repeated factor of the form  can be used as
formula factories.

Example:    since for a proper line  and
associativity. This leads to a decomposition of  with respect to :

YXX

m =m(nn) = (mn)n n =2 1

m n

 
The arrows show the orientation of

the lines.

(mn)n = (cos(α) + sin(α)P)n

= cos(α)n + sin(α)Pn

= cos(α)n + sin(α)P ⋅ n

= cos(α)n − sin(α)n ⋅ P
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Formula factories via 3-way productsFormula factories via 3-way products

Decompose point WRT line.

Examples: Anything can be orthogonally decomposed with respect
to anything else!       For example ...

Decompose line WRT point.

The pieces of the decomposition are often interesting in their own
right. For example,  is closest point to  on .(P ⋅ m)m P m

7 . 8



Formula factories via 3-way productsFormula factories via 3-way products

General 3-way products  of 1-vectors   provide a useful
framework for a general theory of triangles. Lots left to do!

abc

7 . 9



 2D PGA in the browser 2D PGA in the browser

A euclidean demo from Steven De Keninck, using his  Javascript
implementation, showing several of the features discussed above.

ganja.js

https://enkimute.github.io/ganja.js/exa
mples/coffeeshop.html#iAdRREx-

M&fullscreen

 = line (vector)

 = point (bivector)

 = line through  to 

 = reflection of  in 

 = reflection of  in 

 = projection of  on 

 = projection of  on 

ℓ

P

ℓP P , ⊥ ℓ

ℓP ℓ P ℓ

P ℓP ℓ P

(ℓ ⋅ P )ℓ P ℓ

(P ⋅ ℓ)P ℓ P

These slides are available at https://slides.com/skydog23/icerm2019/live
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Bivectors!

Julius Pluecker

Glimpse at 3DGlimpse at 3D
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Glimpse at 3DGlimpse at 3D
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 Kinematics and Mechanics Kinematics and Mechanics

A velocity state is  (in this case a point)

A momentum state is  (in this case a line)

A rigid body is a collection of Newtonian mass points.
Calculate inertia tensor  for the body, a quadratic form
determined by the mass distribution.
 

ODE's for free top:

PGA equations for the free top in :

where , and  and are  in the body frame.

V ∈ ⋀2

M ∈ ⋀n−2

A

M = AV

P (R )κ
∗

 =ġ gV        

            =Ṁ  (VM−
2
1

MV)

g ∈ G M V
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2D Kinematics and Mechanics2D Kinematics and Mechanics

Advantages of PGA:

1. Euclidean case: No splitting into linear and angular parts.  A linear
velocity is a velocity carried by an ideal point (euclidean). An angular
momentum (or force couple) is one carried by the ideal line.

2. Similar results hold in 3D.
3. The equations are numerically optimal compared to matrix methods.

Normalizing  keeps it on the solution space.g
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2D Kinematics and Mechanics2D Kinematics and Mechanics

https://player.vimeo.com/video/358743032?api=1
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3D Kinematics and Mechanics3D Kinematics and Mechanics
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3D
Poinsot

motion (?)
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Coordinate-free
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ConclusionsConclusions

Dual PGA fulfills the "programmers wish list" from the beginning.
It completes Clifford's project (cut short by his death) of combining
Grassmann algebra with all biquaternions, not just the elliptic ones.
There's a lot left to explore, both in non-euclidean and euclidean, 2D
and 3D.
Team members sought to create browser-based metric-neutral PGA
scene graph with physics engine.
Ask me about ideal norms and dual euclidean space.
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ResourcesResources

Javascript implementation
Steven De Keninck
ganja.js

10 . 3
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ResourcesResources

Metric-neutral resources

My Ph. D. thesis
ganja.js

Euclidean resources

   SIGGRAPH 2019 course notes & cheat sheets &

course videos + more.

bivector.net/doc

Live 2D and 3D PGA demos in JavaScript
My ResearchGate PGA project

Questions and comments:  projgeom at gmail.com
Thanks for your attention!

10 . 5
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https://enkimute.github.io/ganja.js/examples/coffeeshop.html#pga3d_differentiation
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Partial solutions: QuaternionsPartial solutions: Quaternions

Quaternions H
Im. quaternions IH
Unit quaternions U

s + xi+ yj+ zk

 v := xi+ yj+ zk  ⇔ (x, y, z) ∈ R3

{g ∈ H ∣ g  =g 1}

III. ODE's for Euler top:
Quaternion equations for the Euler top in :

where  and  are the momentum, resp.,
velocity vectors in the body frame.
(  for inertia tensor ).

R3

 =ġ gV

=Ṁ  (VM−
2
1

MV)

g ∈ U M,V ∈ IH

M = AV A
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Dual projective Grassmann algebraDual projective Grassmann algebra

Multiplication table for RP⋀ 2∗
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Geometric algebra notationGeometric algebra notation

General multivector is sum of k-vectors: 
Points are large letters ( )  and lines are small ( ).
The unit pseudoscalar is written .
The product of a k-vector and an m-vector is a sum

where i increases by steps of 2.

 is the join.

a = Σ  ⟨a⟩  k k

P m
I

KM = Σ  ⟨KM⟩  

i=∣k−m∣
k+m

i

K ∧M = ⟨KM⟩  k+m

K ⋅M := ⟨KM⟩  ∣k−m∣

K×M := KM−MK
K ∨M
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The euclidean algebra The euclidean algebra PP((RR   ))22,,00,,11
∗∗

Question: Why is the signature  using the dual
construction the proper model for the euclidean plane?

(2, 0, 1)

Answer: Given two lines  (with
equations ).  Then

Since the cosine of the angle between the lines is 
,    while .

m  =i c  e  +i 0 a  e  +i 1 b  e  i 2

a  x +i b  y +i c  =i 0
m ⋅1 m  =2 c  c  e  +0 1 0

2 a  a  e  +1 2 1
2 b  b  e  1 2 2

2

a  a  +1 2

b  b  1 2 e  =0
2 0 e  =1

2 e  =2
2 1
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The euclidean algebra The euclidean algebra PP((RR   ))22,,00,,11
∗∗

Question: Why is the signature  using the dual
construction the proper model for the euclidean plane?

(2, 0, 1)

Answer: Given two lines  (with
equations ).  Then

Since the cosine of the angle between the lines is 
,    while .

m  =i c  e  +i 0 a  e  +i 1 b  e  i 2

a  x +i b  y +i c  =i 0
m ⋅1 m  =2 c  c  e  +0 1 0

2 a  a  e  +1 2 1
2 b  b  e  1 2 2

2

a  a  +1 2

b  b  1 2 e  =0
2 0 e  =1

2 e  =2
2 1

History: That  models euclidean geometry was
first published by Jon Selig in 2000.

P(R  )2,0,1
∗
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QuestionQuestion

What is the best wayWhat is the best way

to do Cayley-Klein geometryto do Cayley-Klein geometry

on the computer?on the computer?
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